

ABOUT AUTOBOT INDIA:

AUTOBOT INDIA (ABI) is a leading company offering consultancy in design and engineering to the mainstream Automobile, education, and motorsports. ABI aims to bring the state-of-art design and engineering with disruptive technology and offers high-level tailor-made services as per the client's requirements. ABI also offers wide spectrum of design and development consultancy services catering to various domains like E-mobility, Robotics, Automation, AI and Machine Learning, and in Green energy storage system.

MISSION & VISION:

To establish One Stop Solution Platform (OSP) for the undergraduates, entrepreneurs and industries in design and engineering. To make India as prominent R&D destination by supporting and offering cutting-edge worldclass services and technology solutions.

COURSE INTRODUCTION:

The 30 days professional certification training program for the undergraduate engineers, innovators, automation & electric vehicle aspirants who are bound to learn and upgrade their skills to make more lucrative understanding of design and development of EV, working principals focusing to design & manufacturing of two-seater e-vehicle (prototype) by your own hands.

This program is highly specialized in the area of innovation, design, development, and analysis of electric vehicle using the different industrial tool and various software for designing and analysis. Participants will learn the importance of electro-mechanics, battery storage, regenerative braking system, the design of machine elements and material implementing the calculation in CAD/CAE software and electro-mechanics parameters & magnitudes.

Our training programs follow the practical approach of learning with the aim to train the engineers for the industrial workforce demand, and skill development under the guidance of our decorated trainers, and industry professionals.

WHO CAN PARTICIPATE?

- The program is designed for B.E./B.Tech/Diploma Automobile, Mechanical, Electrical, Electronics, Industrial and Production Engineering students
- Automotive enthusiasts (undergraduate & passed out).
- Anyone having the passion for Automobiles and Electric Vehicle and Saving Environment.
- Diploma Engineers interested in pursuing further studies on the part-time or full-time basis in Automotive, Electrical, Electronics, and Mechanics sector.

COURSE CODE	COURSE NAME		COURSE DURATION	YEAR O INTRODUC	
ABI – EV15	6 ELECTRIC VEHICLE DESIGN & DEVEL	OPMENT	180 HOURS	2017	
PREREQUI • Bas	SITE: sics of Automobile, Motors, Controllers, C	CAD/CAM. bi	asic physics & mecha	nics	
working, d manageme	: n to electric vehicle, Introduction to ele esign & selection mythology of motor ent systems, wire harness design, compo Is in electric vehicle, ASI standards, vehic	s, introduct arison betwe	ion to batteries, bar een Japanese and Ind	ttery pack desigr dian drivetrain te	n, battery chnology,
EARNING Candidates • Des • Cho • Des	OUTCOME: will learn: ign and development of efficient lithium ose suitable drivetrain technology for Ind ign and development of vehicle chassis, I ting, troubleshooting and endurance of e	battery pac dian electric battery pack	k with different size a automobile technolo design and electric v	nd utility. gy.	
• Har	KS: adbooks will be provided by Autobot India	а	1		
prace • The FIME DISTE • Eve	obot India <mark>follows 70% practical & 30%</mark> t ctical learning approach (PLA). ories by industry practitioners who has e	expertise int	o electric vehicle des nd 1 hour break time		
	COL	URSE PLAN	I		
MODULE	HEADNILES		CONTENTS		HOURS
		systems i.e battery, co	nicle development discu . chassis, suspension, s ntrollers, motors, trans dents about the compl ow.	teering, brakes, mission, in order	6
M1	CHASSIS/ROLLCAGE	specification be conside	nicle configuration and ons for complete vehicl red for Chassis design, of roll cage and their us	e, Parameters to Identification of	6

ABI_EV30 Electric Vehicle Development Program

www.autobotindia.com | www.edu.autobotindia.com

systems.

Demonstration of Chassis design in SolidWorks and discussion on subsequent integration with other

REGISTERED UNDER COMPANIES ACT 2013

		Fundamentals of practical finite element analysis, Types of analysis in CAE, CAE-preprocessing using Hypermesh, Demonstration of CAE analysis using Hypermesh, optistruct and Radioss software tools and explanation on prototype also.	6	
		Design validation plan for Chassis, Manufacturing related aspects of Chassis, Testing of Chassis for validation, General failures in Chassis.	6	
		Why there is requirement of suspension and types of suspension design, Explanation of suspension design parameters like camber, caster, KPI etc. Suspension kinematics (Roll center, motion ratio etc.), Design parameters for front and rear suspension selection, Target specifications for front suspension.	6	
	SUSPENSION, STEERING AND BRAKES	Design of front view geometry, 2D geometric analysis in solidworks, Demonstration of front suspension system in SolidWorks (This will include control arms, uprights, hub etc.	6	
		Target spec <mark>ifications for rear sus</mark> pension, Design of rear view geometry, 2D geometric analysis in solidworks	6	
M2		Demonstration of rear suspension system in SolidWorks, Wheel loads, Longitudinal dynamics with calculations, Lateral dynamics with calculations.		
		Why steering is required and types of steering, Steering kinematics, Target specifications for steering, Design of steering geometry and calculations.	6	
		Demonstration of steering system in Solidworks, Various types of braking systems, Brake related calculations, Demonstration of braking systems in Solidworks, Design validation plan of braking systems.	6	
M3	TYPES OF MOTORS USED IN EVs & HOW THEY WORK	Testing of suspension, steering and brakes Brushless DC Motor, AC Induction Motor, Permanent magnet, Synchronous Motor, Axial Flux motors, Comparison of Various Motor Types	3	
	MOTOR CONTROLLER AND ITS	BLDC Motor Control, Switch Configuration, Pulse width Modulation, Single Phase BLDC Motor, Three Phase BLDC Motor, Sensor-less Control of BLDC	6	
M4	WORKING	Motor, AC motor control and winding configuration, Vector control/ Field oriented control method, AC motor controller systems, Motor controller and regenerative braking	6	

REGISTERED UNDER COMPANIES ACT 2013

	REGISTERED UNL	DER COMPANIES ACT 2013	
M5	DESIGN AND SELECTION METHODOLOGY FOR MOTORSClassification of motors based on application, Demonstration on electric motors, coupling a motor with gearbox, Design calculation for motor combined with gearbox and vehicle performance, Motor type, power rating in various existing electric vehicles like truck, buses, cars etc. High voltage, low current system or Low voltage High current system?		5
M6	OVERVIEW OF EV BATTERY SYSTEMS	Lead acid battery, Flow battery, Hydrogen fuel cell, Lithium ion, Lithium iron phosphate, Lithium titanate oxide	3
		Prismatic and cylindrical cells, Cell combinations, Series and parallel connections, Cell holder/structures, Battery management system design, Active balancing and Passive balancing,	3
M7	BATTERY PACK DESIGN	Overview of BMS functions(Algorithms/coding), Overview of BMS/Battery test parameters, Battery thermal management system, Overview of where & why BTMS required, Overview of Thermal management technology, Overview of mechanical enclosure customization/Design, SOC determination methods and their efficiency,	5
		Power management in EVs, How to track down each and every ampere with power management circuits.	3
M8	ON-BOARD CHARGERS AND EVSE	How an on-board EV rectifier system works, Constant Current/ Constant Voltage characteristics, EVSE (Electric Vehicle Supply Equipment) - Wall mounted and public EV charger, Handshaking and current negotiation, SAE J1772 protocol, IEC62196 protocol, Chademo fast charging	5
MO	WIRE HARNESS DESIGN	CAN bus architecture for in-vehicle data transmission, CAN for charging: CHADEMO protocol, Connectors used for harness design and their classification,	3
M9		High current and low current connectors, IP ratings of automotive connectors, Glands used in Enclosures, Automotive Fuses used in Electric Vehicles, Contactors used in Electric vehicles	3
M10	LOW VOLTAGE CONNECTIONS	Buck converter system 12V application wiring schematics and relay usage Throttle and brake types	3
M11	COMPLIANCE AND APPROVAL STANDARDS	ARAI, ITAC standards for equipment and hardware approval AIS standards like AIS 038, 039, 040, 041, 048, 049	3
M12	ELECTRIC VEHICLE ENDURANCE	Electric vehicle manufacturing, testing, troubleshooting and endurance	45

ABI_EV30 Electric Vehicle Development Program

www.autobotindia.com | www.edu.autobotindia.com

CERTIFICATION:

All the participating students will be given "Certificate of Participation" and 5 students will get "Certificate of Appreciation" (on basis of an assessment & Interview taken at the end of the workshop) issued by "Autobot Engineers India Pvt. Ltd." and approved by Polaris Electric.

CERTIFICATE TERM & CONDITIONS:

- 1. Participation certificate will be provided after your successful completion of the training program.
- 2. The grade certificate shall be issued only after successful completion of the assessment.
- 3. Candidate must score minimum 80% for the eligibility of Grade Certificate.
- 4. Participation certificate does not provide any proof of your assessment completion.
- 5. Re-Assessment shall be conducted for the candidates who scored below 80%.
- 6. The weightage of each module is 20 marks.
- 7. In case any candidate fails to achieve the passing grade in any module, shall re-appear for the online assessment in the particular module.
- 8. One-month grace time will be awarded to candidates falling under Rule number 5.

DETAILED GRADE SLAB:

Certification	Assessment (Module Wise)	
Total Marks = 100	100 Marks	
Passing Marks = 80	80 Mark	

Marks	100-95	95-90	90-85	85-80
Grades	A+	А	B+	В